Explicație pas cu pas:
Calculam valoarea expresiei din membrul stang:
[tex]\sin(\frac{\pi}{2}-x)=\sin\frac{\pi}{2}\cos{x}-\sin{x}\cos\frac{\pi}{2}=1\cdot\cos{x}-\sin{x}\cdot 0=\cos{x}\\\cos(\frac{\pi}{2}-x)=\cos\frac{\pi}{2}\cos x+\sin\frac{\pi}{2}\sin x=0\cdot\cos x+1\cdot\sin x=\sin x[/tex]
Atunci ecuatia devine:
[tex]\cos x-\sin x=\sin x-\cos x\\\cos x+\cos x=\sin x+\sin x\\2\cos x=2\sin x |:2\\\cos x=\sin x\\x\in(0,\frac{\pi}{2})\\=>x=\frac{\pi}{4}[/tex]
Precizare:
[tex]\sin(a-b)=\sin a\cos b-\sin b\cos a[/tex]
[tex]\cos(a-b)=\cos a\cos b+\sin a\sin b[/tex]