Răspuns :

Răspuns:

relatia de marimi direct proportionale

[tex]\frac{a}{b}[/tex]=[tex]\frac{c}{d}[/tex]= [tex]\frac{m}{n}[/tex] = k =12   [tex]\frac{a}{b}[/tex]=k   a=k*b

[tex]\frac{a}{b}[/tex]= 12   => a= 12b      c=12d   m=12n

inlocuim in suma si obtinem

a+c+m= 12b+12d+12n= 12(b+d+m)

a)[tex]\frac{a+c+m}{b+d+n}[/tex]=12  

b) a+c=12(b+d)    [tex]\frac{a+c}{b+d}[/tex] =12

c) c+m=12(d+n)   [tex]\frac{a+c}{b+d}[/tex] + [tex]\frac{c+m}{d+n}[/tex] = 12+12= 24

d) a+m=12(b+n)   [tex]\frac{a+m}{b+n}[/tex] + [tex]\frac{a+c+m}{b+d+n}[/tex] =12+12=24