Răspuns:
a)
f(-2) = 2⁻² = 1/2² = 1/4
f(-1) = 2⁻¹ = 1/2¹ = 1/2
f(0) = 2⁰ = 1
f(2) = 2² = 4
b)
f(0) = 2⁰
f(1) = 2¹
f(2) = 2²
..............
f(n+1) = 2ⁿ⁺¹
relatia devine
2⁰ + 2¹ + 2² + .. + 2ⁿ⁺¹ = 131071
aplicam formula pentru pr. geometrica
Sn = b1(qⁿ - 1)/(q - 1)
b1 = primul termen
q = ratia
Sn = 2⁰(2ⁿ⁺² - 1)/(2-1) = 2ⁿ⁺² - 1
2⁰ + 2¹ + 2² + .. + 2ⁿ⁺¹ = 2ⁿ⁺² - 1
2ⁿ⁺² - 1 = 131071
2ⁿ⁺² = 131072
2ⁿ⁺² = 2¹⁷
n + 2 = 17
n = 15