se considera matricele A=[tex]\left[\begin{array}{ccc}6&-10\\3&-5\\\end{array}\right][/tex],[tex]I_2[/tex]=[tex]\left[\begin{array}{ccc}1&0\\0&1\end{array}\right][/tex] si M(a)=[tex]I_2+aA[/tex] unde a este numar real


b) Demonstrați că M(a)·M(b)=M(a+b+ab), pentru orice numere reale a si b

A fost dat ca exercitiu la subiectul 2 in cadrul bacalaureatului iar anul acesta am si eu bac-ul... dar exercitiul acesta nu-l pot rezolva. Profesorul nostru de matematica , ne preda numai din subiectul 3 din examen .. iar chestia asta nu ma ajuta deloc .. , va rog daca ma puteti ajuta si sa-mi explicati mai in detaliu cum se rezolva exercitiul

Răspuns :

Well

[tex]M(a) = I_2 + aA = \left[\begin{array}{ccc}1&0\\0&1\\\end{array}\right] + \left[\begin{array}{ccc}6a&-10a\\3a&-5a\\\end{array}\right] = \left[\begin{array}{ccc}1+6a&-10a\\3a&1-5a\\\end{array}\right][/tex]

Deci M(b) o sa fie:

[tex]M(b)=\left[\begin{array}{ccc}1+6b&-10b\\3b&1-5b\\\end{array}\right][/tex]

[tex]M(a)M(b) = \left[\begin{array}{ccc}1+6a&-10a\\3a&1-5a\\\end{array}\right] \left[\begin{array}{ccc}1+6b&-10b\\3b&1-5b\\\end{array}\right] = \\ = \left[\begin{array}{ccc}(6a+1)(6b+1) -30ab&-10b(6a+1)+10a(5b-1)\\3a(6b+1)+3b(1-5a)&-30ab+(1-5a)(1-5b)\\\end{array}\right][/tex]

[tex]M(a+b+ab)=\left[\begin{array}{ccc}6a+6b+6ab+1&-10a-10b-10ab\\3a+3b+3ab&-5a-5b-5ab+1\\\end{array}\right][/tex]

Am incercat sa ma gandesc la vreo smecherie pt a evita calculele, dar nu vad vreo cale de scapare. Dupa ce calculezi acel M(a)M(b) ar trebui sa dea ce e mai jos.

Daca ai ceva de adaugat, intrebat etc, lasa comm si o sa revin