Răspuns :
a)
A(BDC')=50√3cm²
A=(l²√3)/4 (BDC' triunghi echilateral, laturile sunt diagonalele)
l=√200=10√2cm
CTP in BDC Notez latcub cu x
x²=l²-x²
2x²=200
x=10cm
R: Diagonala e 10√2, latura cubului e 10cm
b)
At in cub este=6l² (din formula At=2ab+2ac+2bc)
At=6×10²=600cm²
V=abc sau V=l³
V=10³=1000cm³
R: At=600cm² V=1000cm³
Răspuns:
10 cm (latura cubului)
10√3 cm (diagonala cubului)
At = 600 cm²
V = 1000 cm³
Explicație pas cu pas:
BD = DC' = C'B => ΔBDC'= echilateral
A = 50√3 = BD²√3/4
200√3 = BD²√3
BD² = 200
BD = √2×100
BD = 10√2 cm (diagonala fetei)
BD = BC√2 =>
10√2 = BC√2 =>
BC = 10 cm (latura cubului)
BD' = BC√3 = 10√3 cm (diagonala cubului)
At = 6l² = 6·(10)² = 6·100 = 600 cm²
V = l³ = (10)³ = 1000 cm³