Răspuns :

a)

A(BDC')=50√3cm²

A=(l²√3)/4 (BDC' triunghi echilateral, laturile sunt diagonalele)

l=√200=10√2cm

CTP in BDC Notez latcub cu x

x²=l²-x²

2x²=200

x=10cm

R: Diagonala e 10√2, latura cubului e 10cm

b)

At in cub este=6l² (din formula At=2ab+2ac+2bc)

At=6×10²=600cm²

V=abc sau V=l³

V=10³=1000cm³

R: At=600cm² V=1000cm³

Răspuns:

10 cm (latura cubului)

10√3 cm (diagonala cubului)

At = 600 cm²

V = 1000 cm³

Explicație pas cu pas:

BD = DC' = C'B => ΔBDC'= echilateral

A = 50√3 = BD²√3/4

200√3 = BD²√3

BD² = 200

BD = √2×100

BD = 10√2 cm (diagonala fetei)

BD = BC√2 =>

10√2 = BC√2 =>

BC = 10 cm (latura cubului)

BD' = BC√3 = 10√3 cm (diagonala cubului)

At = 6l² = 6·(10)² = 6·100 = 600 cm²

V = l³ = (10)³ = 1000 cm³