Răspuns :

Răspuns:

.....................................................

Explicație pas cu pas:

Vezi imaginea C04f
Vezi imaginea C04f

Răspuns:

1)

Nu are asimptota orizontala ,deoarece functia tinde spre infinit.

Astfel, asimptota oblica:

[tex]y = mx + n[/tex]

[tex]m = \lim_{x \to \infty} \frac{f(x)}{x} = \lim_{x \to \infty} \frac{x^2+1}{x^2-x} = 1[/tex]

[tex]n = \lim_{x \to \infty} (f(x) - mx) = \lim_{x \to \infty} (\frac{x^2+1}{x-1} - x) = \lim_{x \to \infty} (\frac{x^2+1}{x-1} - x\frac{x-1}{x-1} ) = \lim_{x \to \infty} (\frac{x^2+1-x^2+x}{x-1} ) = \lim_{x \to \infty} (\frac{1+x}{x-1} ) =1[/tex]

y = x + 1 e asimptota oblica spre ±∞

Asimptota verticala:

x - 1 ≠ 0 => x ≠ 1 , deci functia e definita in felul urmator:

f: R \ {1} -> R , 1 fiind punct de acumulare.

Calculam limitele laterale in 1.

[tex]\lim_{x_{x>1} \to \ 1} f(x) = \lim_{x_{x>1} \to \ 1} \frac{x^2+1}{x-1} = \frac{2}{0+} = +infinit\\ \lim_{x_{x<1} \to \ 1} f(x) = \lim_{x_{x<1} \to \ 1} \frac{x^2+1}{x-1} = \frac{2}{0-} = -infinit\\[/tex]

Deci x = 1 e asimptota verticala.

2)

Asimptota orizontala spre +∞

[tex]\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{x-1}{\sqrt{x^2+4} } = \lim_{x \to \infty} \frac{x-1}{|x|\sqrt{1+\frac{4}{x^2} } } = \lim_{x \to \infty} \frac{x(1-\frac{1}{x} )}{x\sqrt{1+\frac{4}{x^2} } } = 1[/tex]

y = 1

Asimpt. orizontala spre -∞

[tex]\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{x-1}{\sqrt{x^2+4} } = \lim_{x \to \infty} \frac{x-1}{|x|\sqrt{1+\frac{4}{x^2} } } = \lim_{x \to \infty} \frac{x(1-\frac{1}{x} )}{-x\sqrt{1+\frac{4}{x^2} } } = -1[/tex]

y = -1

Nu are asimptota oblica, nici verticala. ( nu exista puncte de acumulare).