Răspuns :

Răspuns:

[tex](\frac{1}{a} +\frac{1}{aa} +\frac{1}{aaa}): (\frac{1}{b} +\frac{1}{bb} +\frac{1}{bbb})=[\frac{1}{a}(\frac{1221)1}{1} +\frac{111)1}{11)11}+\frac{1}{111}]:[\frac{1}{b}(\frac{1221)1}{1} +\frac{111)1}{11)11}+\frac{1}{111}]=\\=(\frac{1}{a}*\frac{1343}{1221}):(\frac{1}{b}*\frac{1343}{1221})=\frac{1343}{1221*a}:\frac{1343}{1221*b}=\frac{1343}{1221*a}*\frac{1221*b}{1343}=\frac{b}{a}[/tex]

[tex](\frac{1}{a} -\frac{1}{aa} +\frac{1}{aaa}): (\frac{1}{b} -\frac{1}{bb} +\frac{1}{bbb})=[\frac{1}{a}(\frac{1221)1}{1}-\frac{111)1}{11)11}+\frac{1}{111}]:[\frac{1}{b}(\frac{1221)1}{1}-\frac{111)1}{11)11}+\frac{1}{111}]=\\=(\frac{1}{a}*\frac{1121}{1221}):(\frac{1}{b}*\frac{1121}{1221})=\frac{1121}{1221*a}:\frac{1121}{1221*b}=\frac{1121}{1221*a}*\frac{1221*b}{1121}=\frac{b}{a}[/tex]

Explicație pas cu pas: