Răspuns :
Răspuns:
a = 2019 +2×(1+2+3+ ... +2018)
a = 2019 + 2×2018×2019 : 2
a = 2019 + 2018×2019
a = 2019(1 + 2018)
a = 2019×2019
a = 2019²
(a² - a)/2018 =
= a(a - 1)/2018
avem ca a = 2019²
= 2019×2019
= 2019(1 + 2018)
= 2019 + 2018×2019
= 2018 + 1 + 2018×2019
= 2018(1 + 2019) + 1
= 2018×2020 + 1
a - 1 = 2018×2020 + 1 - 1 = 2018×2020
a(a - 1)/2018 = (2018×2020 + 1)2018×2020/2018 divizibil cu 2018
=> a(a - 1)/2018 rest 0
a) a= 2019+2•(1+2+3+...+2018)
[tex]a = 2019 + 2 \times \frac{2018 \times 2019}{2} [/tex]
[tex]a = 2019 + 2018 \times 2019[/tex]
[tex]a = 2019 \times (1 + 2018) [/tex]
a=2019•2019
a=2019²=> a= pătrat perfect
b)
[tex] \frac{ {a}^{2} - a }{2018} = \frac{a(a - 1)}{2018} = \frac{2019(2019 - 1)}{2018} = [/tex]
[tex] = \frac{2018 \times 2019}{2018} = > [/tex]
fractia e divizibila cu 2018, deci restul este 0.