Răspuns :
Răspuns:
Explicație pas cu pas:
[tex]\left \{ {{x+3(y-1)=-10} \atop {3(x-1)+y=-8}} \right. ~\left \{ {{x+3y-3=-10} \atop {3x-3+y=-8}} \right. ~\left \{ {{x+3y=-7~|*(-3)} \atop {3x+y=-5}} \right. ~\left \{ {{-3x-9y=21} \atop {3x+y=-5}} \right.~[/tex]
Deoarece acum aplicam metoda reducerii (sau adunarii), adunam ecuatiile parte cu parte, obtinem -8y=16, ⇒y=-2. Inlocuim in careva ecuatie a sistemului, fie in x+3y=-7, ⇒x+3·(-2)=-7, ⇒x-6=-7, ⇒x=-7+6=-1.
Raspuns: S={(-1; -2)}.
Metoda substitutiei. vom porni de la sistemul deacum obtinut,
[tex]\left \{ {{x+3y=-7} \atop {3x+y=-5}} \right. ~\left \{ {{x=-7-3y} \atop {3*(-7-3y)+y=-5}} \right. ~\left \{ {{x=-7-3y} \atop {-21-9y+y=-5}} \right. ~\left \{ {{x=-7-3y} \atop {-8y=-5+21}} \right.\\\left \{ {{x=-7-3y} \atop {-8y=16}} \right.~\left \{ {{x=-7-3y} \atop {y=16:(-8)}} \right.~\left \{ {{x=-7-3y} \atop {y=-2}} \right.[/tex]
Inlocuim in prima, x=-7-3·(-2)=-7+6=-1.
Raspuns: S={(-1;-2)}
Răspuns:
Explicație pas cu pas:
a)
- Metoda substitutiei
{ x+3(y-1) = -10
{ 3(x-1)+y= -8
___________
{ x + 3 y - 3 = - 10 => { x + 3 y = - 7 => x = - 7 - 3 y
{ 3 x - 3 + y = - 8 => { 3 x + y = - 5
__________________________________________
3 x + y = - 5
3 ( - 7 - 3 y ) + y = - 5
- 21 - 9 y + y = - 5
- 8 y = -5 + 21
y = 16 : ( - 8 ) => y = - 2
x = - 7 - 3 × ( - 2 ) = - 7 + 6 => x = - 1
Solutii: ( x; y) = ( - 1; - 2 )
_________________________________________
- Metoda reducerii
{ x + 3 y = - 7 [ × 3
{ 3 x + y = - 5
___________________
{ 3 x + 9 y = - 21
{ 3 x + y = - 5
____________scad relatiile
/ 8 y = - 21 - ( - 5)
8 y = - 21 + 5
y = ( - 16 ) : 8 => y = - 2
_____________________
x + 3 y = - 7
x + 3 × ( - 2 ) = - 7
x - 6 = - 7
x = - 7 + 6 => x = - 1
Solutii ( x; y) = ( - 1; - 2 )