{abc; bad; cda; dcb}i.p. {1/41; 3/214; 3/341; 1/144}
=> abc•1/41=bad•3/214=cda•3/341=dcb•1/144=k
abc=41•k
bad=214k/3
cda=341k/3
dcb=144k
=> k este divizibil cu 3; pentru ca numerele sunt intregi
k∈{3; 6}
1. k=3
abc=41•3=123
bad=214
cda=341
dcb=144•3=432
deci, a=1; b=2; c=3; d=4; abcd=1234
a+b+c+d=1+2+3+4=10 ; 10 e divizibil cu 5
2. k=6
abc=41•6=246
bad=214•2=428
cda=341•2=682
dcb=144•6=864
deci, a=2; b=4; c=6; d=8; abcd=2468
a+b+c+d=2+4+6+8=20 ; 20 e divizibil cu 5
R: abcd={1234; 2468}