Răspuns:
Descompunem pe 2020 si 2019 in factori primi
[tex]2020=2^2\times 5\times 101 \\ \\ 2020^{2019}=2^{4038}\times 5^{2019}\times 101^{2019}[/tex]
Are (4038+1)(2019+1)(2019+1) = 4039×2020[tex]^2[/tex] divizori
2019 = 3 × 673
[tex]2019^{2020}=3^{2020}\times 673^{2020}[/tex]
Are (2020+1)(2020+1) = 2020[tex]^2[/tex]+2020+2020+1 = 2020[tex]^2[/tex]+4041 divizori
Evident, primul are mai multi divizori