Răspuns :
[tex]b)a=0\\\vec{T_1}+\vec{T_2}+\vec{G}+\vec{N}+\vec{F_f}=0\\Ox:T_1+T_2sin\alpha-G_p-F_f=0\\Oy:N+T_2cos\alpha-G_n=0=>N=G_n-T_2cos\alpha\\sin\alpha=\frac{h}{l}=\frac{3}{5}=0,6\\sin^2\alpha+cos^2\alpha=1=>cos^2\alpha=1-sin^2\alpha=1-0,6^2=1-0,36=0,64=>cos\alpha=\pm\sqrt0,64=\pm0,8\\\alpha\in(0;\frac{\pi}{2})=>\alpha\in C1=>sin\alpha>0 ;cos\alpha>0=>cos\alpha=0,8\\G_n=mgcos\alpha=2500*10*0,8=20000 N=>G_n=20000 N=20 kN\\G_p=mgsin\alpha=2500*10*0,6=15000 N=>G_p=15000 N=15 kN\\[/tex]
[tex]T_1+T_2sin\alpha-G_p-F_f=0=>F_f=T_1+T_2sin\alpha-G_p=16+5*0,6-15=1+3=4 kN=>F_f=4 kN\\c)N=G_n-T_2cos\alpha=20-5*0,8=20-4=16 kN=>N=16 kN\\F_f=\mu N=>\mu=\frac{F_f}{N}=\frac{4}{16}=0,25=>\mu=0,25\\d)\vec{N'}+\vec{G}+\vec{F_f'}=m\vec{a}\\Ox:mgsin\alpha-F_f'=ma\\Oy:N'-mgcos\alpha=0=>N'=mgcos\alpha\\F_f'=\mu N=\mu mgcos\alpha\\mgsin\alpha-\mu mgcos\alpha=ma|:m=>a=g(sin\alpha-\mu cos\alpha)=10(0,6-0,25*0,8)=10*0,4=4 m/s^2=>a=4 m/s^2[/tex]