Răspuns:
x= ±\frac{\sqrt{\sqrt{7}\left(8+4\sqrt{3}\right)-453}}{2}
Explicație pas cu pas:
[tex]\frac{4x^{2} }{4}[/tex] = \frac{\left(8+4\sqrt{3}\right)\sqrt{7}}{4}-\frac{453}{4}
= x²=\frac{\sqrt{7}\left(8+4\sqrt{3}\right)-453}{4}
pentru x² = f(a) solutiile sunt x= ±√f(a)
x = ±\sqrt{\frac{\sqrt{7}\left(8+4\sqrt{3}\right)-453}{4}}
aplicam regula radicalilor: \sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}}
x = \frac{\sqrt{\sqrt{7}\left(8+4\sqrt{3}\right)-453}}{\sqrt{4}}
√4 = 2 ,
x = ±\frac{\sqrt{\sqrt{7}\left(8+4\sqrt{3}\right)-453}}{2}