Răspuns :

1+3+5+...+99=1+2+3+4+5+...+98+99-(2+4+6+...+98)=99(99+1)/2-2(1+2+3+...+49)=99*100/2-2*49(49+1)/2=99*50-49*50=50(99-49)=50*50=2500

Răspus:

Explicație pas cu pas:

1 + 3 + 5 + ...... + 99 =

->  stabilesc cati termeni are suma numerelor impare

(99 -1) : 2 + 1 = 98 : 2 + 1 = 50 de termeni

= 50 × ( 1 + 99 ) : 2 =

= 50 × 100 : 2 =

= 50 × 50 =

= 2 500

____________________________________________

Sau:

(1 + 2 + 3 + ...... + 98 + 99 )- (2+4 +.....+98) =

-> aplic formula sumei lui Gauss:

= nr. termeni x suma dintre primul si ultimul termen : 2

= 99 × (1+99):2 - 2 × (1+2+....+49) =

= 99 × 100 : 2 - 2 × 49 × (1+49): 2 =

= 99 × 50 - 49 × 50 =

= 50 × ( 99 - 49 ) =

= 50 × 50 =

= 2 500