Răspuns :

1)
|4x-5| ≤ 3
a)
|4x-5|  = 4x - 5 daca  4x -5 ≥ 0  => x ≥ 5/4
4x - 5 ≤ 3
4x ≤ 8
x ≤ 8 / 4
x ≤ 2 si x ≥ 5/4
=> x ∈ [5/4,  2]

b)
|4x-5|  = -(4x - 5) daca  4x -5 < 0  => x < 5/4
5 - 4x ≤ 3
-4x ≤ 3-5
-4x ≤ -2    | * (-1)
4x ≥ 2
x ≥ 2/4
x ≥ 1/2  si x < 5/4
=> x ∈ [1/2,  5/4 )

Solutia:
x ∈ [1/2,  5/5 ) U [5/4,  2]
x ∈ [1/2,  2]

2)
x² - 6x + 9 ≤ 0
(x - 3)(x - 3) = 0
=> x₁ = x₂ = 3  este o solutie dubla
facorul lui x² > 0
=> functia atasata inecuatiei nu are valori negative
dar are valoarea 0 in x = 3
Solutia inecuatiei:
x = 0