Răspuns :
(a)AB,CD)~(4,6)
AB[tex] \frac{AB}{4} [/tex] = [tex] \frac{CD}{6} [/tex]=K
AB supra 4=k => AB= 4k
CD supra 6 =K -> CD=6k
In Δ ACB-m(B)= 90grade => (prin teorema inaltimii 1) CE²=AE XEB
(12√2)² =4k² x 2k²
288=8k²
K²=36 => k= √36=6cm
AE=4k => AE=24 cm
EB=6k => EB=36 cm
AB=AE+EB=24 +36= 60 cm
DC=AE= 24 cm
b)A= AB =DC supra 2 x CE = [tex] \frac{60+24}{2} [/tex] x 12√2 = 42 x 12√2 =504√2 cm²
c)I n ΔACE- m(E)= 90 grade => (ptin PT) CE²+AE²=AC ²
(12√2)² + 24² = AC²
288+576=AC²
864=AC² =>AC=12√6
In Δ DAB- m(A)= 90 grade => AD² +AB²=BD²
12√2² + 60²=BD ²
288+3600=BD²
3888=BD² => BD=36√3 cm
AB[tex] \frac{AB}{4} [/tex] = [tex] \frac{CD}{6} [/tex]=K
AB supra 4=k => AB= 4k
CD supra 6 =K -> CD=6k
In Δ ACB-m(B)= 90grade => (prin teorema inaltimii 1) CE²=AE XEB
(12√2)² =4k² x 2k²
288=8k²
K²=36 => k= √36=6cm
AE=4k => AE=24 cm
EB=6k => EB=36 cm
AB=AE+EB=24 +36= 60 cm
DC=AE= 24 cm
b)A= AB =DC supra 2 x CE = [tex] \frac{60+24}{2} [/tex] x 12√2 = 42 x 12√2 =504√2 cm²
c)I n ΔACE- m(E)= 90 grade => (ptin PT) CE²+AE²=AC ²
(12√2)² + 24² = AC²
288+576=AC²
864=AC² =>AC=12√6
In Δ DAB- m(A)= 90 grade => AD² +AB²=BD²
12√2² + 60²=BD ²
288+3600=BD²
3888=BD² => BD=36√3 cm
ABCD-trapez
mas<A=mas<D=90
AC_|_BC =>mas<ACB=90
AB;DC dp cu 4;6
AB/4=DC/6=k
AB=4k
DC=6k
ΔABC, mas<C=90
fie CM _|_AB
CM-h
AM=DC=4k
AC²=AM*AB
AC²= 4k* 6k=24k² =>AC= 2√6 k
ΔADC, mas<D=90
AD²=AC²- DC²
(12√2)²= (2√6 k)² + (4k)²
288= 24k² +16k²
288= 40k²
k²= 288/40=> k= √288/10= 12√2/√10= 12√20/10= 6√20/5= 12√5/5
DC= 4 * 12√5/5= 48√5/5
AB= 6 * 12√5/5= 72√5/5
AC = 2√6 * 12√5/5= 24√30/5
A ABCD = (DC+AB)*AD/2 = (48√5/5 + 72√5/5 ) * 12√2/2=
= 120√5/5 * 6√2= 24√5 * 6√2= 144√10
ΔADB, mas<A=90
DB²=AD² +AB²
DB² = (12√2)² + (72√5/5)²
DB² = 288 + 25920/25
DB²= (7200+25 920)/25
DB² = 33120/25
DB = √33120/25= 12√230/5
mas<A=mas<D=90
AC_|_BC =>mas<ACB=90
AB;DC dp cu 4;6
AB/4=DC/6=k
AB=4k
DC=6k
ΔABC, mas<C=90
fie CM _|_AB
CM-h
AM=DC=4k
AC²=AM*AB
AC²= 4k* 6k=24k² =>AC= 2√6 k
ΔADC, mas<D=90
AD²=AC²- DC²
(12√2)²= (2√6 k)² + (4k)²
288= 24k² +16k²
288= 40k²
k²= 288/40=> k= √288/10= 12√2/√10= 12√20/10= 6√20/5= 12√5/5
DC= 4 * 12√5/5= 48√5/5
AB= 6 * 12√5/5= 72√5/5
AC = 2√6 * 12√5/5= 24√30/5
A ABCD = (DC+AB)*AD/2 = (48√5/5 + 72√5/5 ) * 12√2/2=
= 120√5/5 * 6√2= 24√5 * 6√2= 144√10
ΔADB, mas<A=90
DB²=AD² +AB²
DB² = (12√2)² + (72√5/5)²
DB² = 288 + 25920/25
DB²= (7200+25 920)/25
DB² = 33120/25
DB = √33120/25= 12√230/5