Scrie toate numerele de forma ab cu cifre distincte pe care le poti forma din cifrele                      2 ; 5 ; 7 ;                                                                                                                              1 ;3 ; 8 ;                                                                                                                               4 ; 2 ; 0 ;                                                                                                                          Scrie toate numerele posibile de forma ab doua cifre cuprinse intre 63 si 83 unde ;                          a < b                                                                                                                                     a + b =10  clasa 1

Răspuns :


Exercitiul 1)
Cifrele sunt:

a) 2 ; 5 ;7              __
Numerele de forma ab sunt:  25; 27; 52; 57; 72; 75    in total 6 combinatii.

b) 1 ; 3 ; 8             __
Numerele de forma ab sunt:  13; 18; 31; 38; 81; 83    in total 6 combinatii

c) 4 ; 2 ; 0 
Aici avem o problema.              __
Prin expresia "numere de forma ab" se intelege numar de 2 cifre.
Dar in lista de cifre avem si un "0".
Daca cifra zero ajunge pe prima pozitie, de exemplu 02 atunci 02 = 2 si numarul 
are doar o cifra si nu e corect.
In concluzie, vom elimina combinatiile cu zero pe prima pozitie.
                                 __
=> Numerele de forma ab, sunt:  20; 24; 40; 42    in total 4 combinatii.  

Pentru fiecare din punctele a), b) , c), numerele le-am scris in ordine crescatoare. 

Exercitiul 2)

Numerele cuprinse intre 63 si 83 sunt:
64; 65; 66; 67; 68; 69; 70; 71; 72; 73; 74; 75; 76; 77; 78; 79; 80; 81; 82.
Nota: numerele 63 si 83 nu sunt in lista prntru ca enunrul spune "intre 63 si 83".
Daca enuntul era:  "de la 63 la 83" atunci ar fi fost in lisa si numerele 63 si 83.

Exercitiul 3:
Sa se gaseasca numerele naturale a si b cu proprietatea ca a + b = 10
a = 0; b = 10
a = 1; b = 9
a = 2; b = 8
a = 3; b = 7
a = 4; b = 6
a = 5; b = 5
a = 6; b = 4
a = 7; b = 3
a = 8; b = 2
a = 9; b = 1
a = 10; b = 0

In total sunt 11 solutii.