Răspuns :

Aceste 3 ex folosesc sume Gauss. Ma rog, sunt 2 formule:
n=(z-a):r+1, unde n=nr de elemente, de nr din sir; z=ultimul nr, iar a= primul nr ; r=ratia, care se afla scazand : al doilea nr minus primul.
Iar cea de-a doua formula: S=[(z+a )* n] /2, unde S= suma.
Acum, pur si simplu aplici formulele si nu iti mai ramane decat sa calculezi cat da in final.
Suma Gauss=a+b+c+..n=(n+a)*[(n-a):(b-a)+1]:2

3+7+11+15+...743 =(743+3)[(743-3):4+1]:2=746*186:2=69378

5+7+9+11+...2005 =(2005+5)[(2005-5):2+1]:2=2010*1001:2=1006005

22+25+28+...+301
=(301+22)[(301-22):3+1]:2=323*94:2=15181