Răspuns :
b) n=12x+5
și n=15x+8;
Adunam 7 in ambii membrii ai relației(observam ca 12-5=15-8=7) n+7=12x+12=12(x+1)⇒ n+7=multiplu al lui 12 n+7+15x+15+15(x+1)=>n+7+multiplu al lui 15
n+7=c.m.m.m.c (12,15)=2²·3·5=4·3·5=60
12=2²·3
15=3·5
n+7=60⇒n=60-7=53
c) n=24x+10 și n=36x+22
Adunam 14 in ambii membrii ai relatiei(observam ca 24-5=36-22=14) n+14=24x+24=24(x+1)=>n+14=multiplu al lui 24
n+14=36x+36=36(x+1)=> n+14=multiplu al lui 36
n+14=c.m.m.m.c (24;36)= 2³·3²=8·9=72
24=2³·3
36=2²·3²
n+14=72⇒n=72-14=58
16. a) 127:n=[tex] c_{1} [/tex],r 7
53:n=[tex] c_{2} [/tex],r 5
76:n=[tex] c_{3} [/tex],r4
n=(127-7):c n=120:c
n=(53-5):c n=48:c
n=(76-4):c n=72:c
n=c.m.m.d.c(120,48,72)=2³·3=8·3=24
120=2³·3·5
48=[tex] 2^{4} [/tex]·3
72=2³·3²
In concluzie n=24
b) 47:n=[tex] c_{1} [/tex],r 2
53:n=[tex] c_{2} [/tex],r 3
64:n=[tex] c_{3} [/tex],r 4
n=(47-2):[tex] c_{1}[/tex]⇒ n=45:[tex] c_{1}[/tex]
n=(53-3):[tex] c_{2}[/tex] ⇒ n=50:[tex] c_{2}[/tex]
n=(64-4):[tex] c_{2}[/tex] ⇒ n=60:[tex] c_{3} [/tex]
n=c.m.m.d.c(47,50,60)=5
45=3²·5
50=2·5²
60=2²·3·5
In cocluzie n=5
c) 66:n=[tex] c_{1}[/tex],r6
142:n=[tex] c_{2}[/tex],r7
113:n=[tex] c_{3}[/tex],r8
n=(66-6):[tex] c_{1}[/tex]⇒ n=60:[tex] c_{1}[/tex]
n=(142-7):[tex] c_{2}[/tex]⇒n=135:[tex] c_{2}[/tex]
n=(113-8):[tex] c_{3}[/tex]⇒n=105:[tex] c_{3}[/tex]
n=c.m.m.d.c(60,135,105)=5·3=15
60=2²·3·5
135=5·3³
105=5·3·7
In concluzie n=15
Adunam 7 in ambii membrii ai relației(observam ca 12-5=15-8=7) n+7=12x+12=12(x+1)⇒ n+7=multiplu al lui 12 n+7+15x+15+15(x+1)=>n+7+multiplu al lui 15
n+7=c.m.m.m.c (12,15)=2²·3·5=4·3·5=60
12=2²·3
15=3·5
n+7=60⇒n=60-7=53
c) n=24x+10 și n=36x+22
Adunam 14 in ambii membrii ai relatiei(observam ca 24-5=36-22=14) n+14=24x+24=24(x+1)=>n+14=multiplu al lui 24
n+14=36x+36=36(x+1)=> n+14=multiplu al lui 36
n+14=c.m.m.m.c (24;36)= 2³·3²=8·9=72
24=2³·3
36=2²·3²
n+14=72⇒n=72-14=58
16. a) 127:n=[tex] c_{1} [/tex],r 7
53:n=[tex] c_{2} [/tex],r 5
76:n=[tex] c_{3} [/tex],r4
n=(127-7):c n=120:c
n=(53-5):c n=48:c
n=(76-4):c n=72:c
n=c.m.m.d.c(120,48,72)=2³·3=8·3=24
120=2³·3·5
48=[tex] 2^{4} [/tex]·3
72=2³·3²
In concluzie n=24
b) 47:n=[tex] c_{1} [/tex],r 2
53:n=[tex] c_{2} [/tex],r 3
64:n=[tex] c_{3} [/tex],r 4
n=(47-2):[tex] c_{1}[/tex]⇒ n=45:[tex] c_{1}[/tex]
n=(53-3):[tex] c_{2}[/tex] ⇒ n=50:[tex] c_{2}[/tex]
n=(64-4):[tex] c_{2}[/tex] ⇒ n=60:[tex] c_{3} [/tex]
n=c.m.m.d.c(47,50,60)=5
45=3²·5
50=2·5²
60=2²·3·5
In cocluzie n=5
c) 66:n=[tex] c_{1}[/tex],r6
142:n=[tex] c_{2}[/tex],r7
113:n=[tex] c_{3}[/tex],r8
n=(66-6):[tex] c_{1}[/tex]⇒ n=60:[tex] c_{1}[/tex]
n=(142-7):[tex] c_{2}[/tex]⇒n=135:[tex] c_{2}[/tex]
n=(113-8):[tex] c_{3}[/tex]⇒n=105:[tex] c_{3}[/tex]
n=c.m.m.d.c(60,135,105)=5·3=15
60=2²·3·5
135=5·3³
105=5·3·7
In concluzie n=15