Răspuns :

[tex] \frac{7}{3* 2^{97} } = \frac{3n + 1}{ 4^{50}} - 2^{98} [/tex]

[tex] \frac{7}{3* 2^{97}} = \frac{3n+1}{ 2^{100}} - \frac{ 2^{98} }{1} [/tex]

Aducem la acelasi numitor:

[tex] \frac{ 2^{3} * 7}{3 * 2^{100}} = \frac{3(3n+1)}{3* 2^{100}} - \frac{3* 2^{100}* 2^{98}}{3* 2^{100}} [/tex]

[tex] 2^{3} * 7 = 3(3n + 1) - 3* 2^{100} * 2^{98}[/tex]

[tex]56 = 9n + 3 - 3* 2^{198} [/tex]

[tex]9n = 3* 2^{198} + 56 - 3[/tex]

[tex]n = \frac{3* 2^{198} + 53}{9} [/tex]