Răspuns :
x-nr initial de paini
x/2 +1/2 -a cumparat prima persoana
x- (x/2 +1/2)= x- (x+1)/2= (2x-x-1)/2= (x-1)/2 -restul
(x-1)/2/2 +1/2= (x-1)/2 * 1/2+1/2= (x-1)/4 +1/2= (x-1+2)/4= (x+1)/4-a cumparat a2a persoana.
(x-1)/2 -(x+1)/4= (2x-2-x-1)/4= (x-3)/4 -noul rest
(x-3)/4/2 +1/2= (x-3)/4*1/2 +1/2= (x-3)/8 +1/2= (x-3+4)/8= (x+1)/8-a cumparat a3a persoana
(x+1)/2 + (x+1)/4 + (x+1)/8=x aducem la acelasi numitor
4x+4+2x+2+x+1=8x
7x+7=8x
7x-8x=-7
-x=-7
x=7
(7+1)/2= 8/2=4 paini a cumparat prima persoana
(7+1)/4= 8/4=2 paini a cumparat a2a persoana
(7+1)/8= 8/8=1 paine a cumparat a3a persoana
x/2 +1/2 -a cumparat prima persoana
x- (x/2 +1/2)= x- (x+1)/2= (2x-x-1)/2= (x-1)/2 -restul
(x-1)/2/2 +1/2= (x-1)/2 * 1/2+1/2= (x-1)/4 +1/2= (x-1+2)/4= (x+1)/4-a cumparat a2a persoana.
(x-1)/2 -(x+1)/4= (2x-2-x-1)/4= (x-3)/4 -noul rest
(x-3)/4/2 +1/2= (x-3)/4*1/2 +1/2= (x-3)/8 +1/2= (x-3+4)/8= (x+1)/8-a cumparat a3a persoana
(x+1)/2 + (x+1)/4 + (x+1)/8=x aducem la acelasi numitor
4x+4+2x+2+x+1=8x
7x+7=8x
7x-8x=-7
-x=-7
x=7
(7+1)/2= 8/2=4 paini a cumparat prima persoana
(7+1)/4= 8/4=2 paini a cumparat a2a persoana
(7+1)/8= 8/8=1 paine a cumparat a3a persoana
I x/2+1/2
rest r1=x/2-1/2
II r1/2+1/2
rest r2=r1/2-1/2
III r2/2+1/2
rest r2/2-1/2 = 0 ⇒ r2/2=1/2⇒ r2=1
1=r1/2-1/2 ⇒ r1/2=1+1/2=3/2⇒ r1=3
3=x/2-1/2⇒ x=3+1/2= 7/2⇒ x=7
verificare I 7/2+1/2=4 paini
r1=3
II 3/2+1/2=2 paini
r2=1
III 1/2+1/2=1
rest 0
rest r1=x/2-1/2
II r1/2+1/2
rest r2=r1/2-1/2
III r2/2+1/2
rest r2/2-1/2 = 0 ⇒ r2/2=1/2⇒ r2=1
1=r1/2-1/2 ⇒ r1/2=1+1/2=3/2⇒ r1=3
3=x/2-1/2⇒ x=3+1/2= 7/2⇒ x=7
verificare I 7/2+1/2=4 paini
r1=3
II 3/2+1/2=2 paini
r2=1
III 1/2+1/2=1
rest 0