Răspuns :
(2n+3)|(5n+12) |2
(2n+3)|(2n+3) |5
(2n+3)|(10n+24)
(2n+3)|(10n+15)
(2n+3)|(10n+24-10n-15)
(2n+3)|9
n∈N ⇒2n+3∈{-1;1;-3;3;-9;9}
1)2n+3=1 2n=-2 n=-1∉N
2)2n+3=-1 2n=-4 n=-2 ∉N
3)2n+3=3 2n=0 n=0∈N
4)2n+3=-3 2n=-6 n=-3∉N
5)2n+3=9 2n=6 n=3∈N
6)2n+3=-9 2n=-6 n=-3∉N ⇒n∈{0;3}
(2n+3)|(2n+3) |5
(2n+3)|(10n+24)
(2n+3)|(10n+15)
(2n+3)|(10n+24-10n-15)
(2n+3)|9
n∈N ⇒2n+3∈{-1;1;-3;3;-9;9}
1)2n+3=1 2n=-2 n=-1∉N
2)2n+3=-1 2n=-4 n=-2 ∉N
3)2n+3=3 2n=0 n=0∈N
4)2n+3=-3 2n=-6 n=-3∉N
5)2n+3=9 2n=6 n=3∈N
6)2n+3=-9 2n=-6 n=-3∉N ⇒n∈{0;3}
2n+3 | 5n+12 => 2n+3 | 2n+3 deci avem 2n+3|5n+12 | ·2 ⇒ 2n+3|10n+24 ⇒
2n+3|2n+3 | · (-5) 2n+3| -10n-15 (adunam cele doua relatii si obtinem) 2n+3| 9 ⇒ 2n+3 ∈ Divizorilor lui 9 = { +1,+3,+9 , -1,-3,-9}
2n+3=1 2n+3=-1 2n+3=3 2n+3=-3 2n+3=9 2n+3=-9
2n=-2 2n=-4 2n=0 2n=--6 2n=6 2n=-6
n=-1 ∉N n=-2∉N n=0∈N n=-3 ∉N n=3∈N n=-3∉N
n={0,3}
Sper ca nu am gresit la calcule ,dar im principiu asa se rezolva acest gen de probleme.
2n+3|2n+3 | · (-5) 2n+3| -10n-15 (adunam cele doua relatii si obtinem) 2n+3| 9 ⇒ 2n+3 ∈ Divizorilor lui 9 = { +1,+3,+9 , -1,-3,-9}
2n+3=1 2n+3=-1 2n+3=3 2n+3=-3 2n+3=9 2n+3=-9
2n=-2 2n=-4 2n=0 2n=--6 2n=6 2n=-6
n=-1 ∉N n=-2∉N n=0∈N n=-3 ∉N n=3∈N n=-3∉N
n={0,3}
Sper ca nu am gresit la calcule ,dar im principiu asa se rezolva acest gen de probleme.