Răspuns :
f(1)=1
f(x)=px+q
f(1)=1 (se inlocuieste x cu ce este in paranteza langa f)
f(1)=p*1+q= p+q (se egaleaza cele 2 ecuatii)
p+q=1
f(2)=2
f(2)=p*2+q=2p+q
2p+q=2
se formeaza sistemul
{p+q=1 |-1
{2p+q=2 inmultim prima ecuatie cu -1
{-p-q=-1
{2p+q=2 se aduna cele 2 ecuatii
p/=1
p+q=1
1+q=1
q=1-1
q=0
f(x)=px+q
f(1)=1 (se inlocuieste x cu ce este in paranteza langa f)
f(1)=p*1+q= p+q (se egaleaza cele 2 ecuatii)
p+q=1
f(2)=2
f(2)=p*2+q=2p+q
2p+q=2
se formeaza sistemul
{p+q=1 |-1
{2p+q=2 inmultim prima ecuatie cu -1
{-p-q=-1
{2p+q=2 se aduna cele 2 ecuatii
p/=1
p+q=1
1+q=1
q=1-1
q=0
f(x)=px+q
f(1)=p*1+q=1
f(1)=p+q=1
f(2)=p*2+q=2
f(2)=2p+q=2
p+q=1/*(-1)⇒-p-q=-1
2p+q=2 2p+q=2
p=1
p+q=1
1+q=1
q=0
f(x)=x+o
f(1)=p*1+q=1
f(1)=p+q=1
f(2)=p*2+q=2
f(2)=2p+q=2
p+q=1/*(-1)⇒-p-q=-1
2p+q=2 2p+q=2
p=1
p+q=1
1+q=1
q=0
f(x)=x+o