Cunoscand ca [tex] \frac{a}{b} [/tex] = [tex] \frac{3}{7} [/tex] calculati valoarea expresiei [tex] \frac{5a-b}{2a+3b} [/tex]

Răspuns :

[tex]a=\frac{3}{7}b[/tex]

Expresia devine:

[tex]\dfrac{5\cdot\frac{3}{7}b-b}{2\cdot\frac{3}{7}b+3b}=\dfrac{b\left(5\cdot\frac{3}{7}-1\right)}{b\left(2\cdot\frac{3}{7}+3\right)}=...[/tex]

Simplifici pe [tex]b[/tex]  și faci calculele.
a=3b/7

(5*3b/7 -b)  supra (2*3b/7 +3b)

(15b/7-b)  supra (6b/7+3b)   aducem la acelasi numitor in paranteze

(15b-7b)/7   supra (6b+7b)/7

8b/7  supra 13b/7=

=8b/7 * 7/13b  se simplifica si ne da

=8/13