Răspuns:
Explicație pas cu pas:
[tex]\bf a)~~ 2^{1}\cdot 2^{5}\cdot2^{7} =2^{1+5+7} = \green{\underline{~2^{13~}}}[/tex]
[tex]\bf b)~7^{6}\cdot7^{3}\cdot7=7^{6+3+1}=\blue{\underline{~7^{10}~}}[/tex]
[tex]\bf c)~11^{0}\cdot11^{1}\cdot11^{11}=11^{0+1+11}=\purple{\underline{~11^{12}~}}[/tex]
[tex]\bf d)~2^{0}\cdot2^{1}\cdot2^{2}\cdot...\cdot2^{9} =2^{0+1+2+...+9}= 2^{(9\cdot10):2}=\pink{\underline{~ 2^{45}~}}[/tex]
[tex]\bf e)~\big(2^{5}\big)^{15} =2^{5\cdot15}=\red{\underline{~2^{75}~}}[/tex]
[tex]\bf f)~(5^{6})^{7}=5^{6\cdot7}=\green{\underline{~5^{42}~}}[/tex]
[tex]\bf g)~2^{135}:2^{100}=2^{135-100}=\blue{\underline{~2^{35}~}}[/tex]
[tex]\bf h)~5^{32}:5^{23}=5^{32-23}=\red{\underline{~5^{9}~}}[/tex]