Răspuns:
a) ABCD - patrat ⇒ BC≡CD (1)
ΔBCE - ec ⇒ BC≡CE (2)
(1), (2) ⇒ CD≡CE ⇒ ΔCDE is ⇒ ∡CDE≡∡CED=(180°-∡DCE):2
ABCD - patrat ⇒ ∡BCD=90° (3)
ΔBCE - ec ⇒ ∡BCE=60° (4)
(3), (4) ⇒ ∡DCE=150°
∡CDE=(180°-150°):2=30°:2 ⇒ ∡CDE=15°
b) fie BF⊥DE ⇒ d(B, DE)=BF
in ΔBFE dr: ∡BFE=∡BEC-∡CEF=60°-15°=45° ⇒ ΔBFE dr. is
T.P. ⇒ BE²=2BF² ⇒ BF²=BE²/2
BF=BE/√2=4√2/√2 ⇒ BF=4
Explicație pas cu pas: