Răspuns:
Explicație pas cu pas:
a) √3·x + 3 = 0 => √3·x = -3 => x = -3/√3 = -3√3/3 => x = -√3
b) -√5·x +10 = √20·x - 20 => √20·x +√5·x = 10+20 =>
2√5·x +√5·x = 30 => 3√5·x = 30 => x = 30/3√5 =>
x = 10/√5 = 10√5/5 => x = 2√5
c) ²⁾(y-√2)/3 + ³⁾(y+√2)/2 = ⁶⁾4√2+y =>
2y-2√2+3y+3√2=24√2+6y =>
6y-5y = √2-24√2 => y = -23√2
d) (y-√3)(y-√5) = 0 => y₁ = √3 ; y₂ = √5
e) I7-√7·xI = 14 =>
7-√7·x = 14 => √7·x = 7-14 => √7·x = -7 => x = -7/√7 = -7√7/7 =>
x₁ = -√7
-7+√7x = 14 => √7x = 14+7 => √7x = 21 => x = 21/√7 =>
x = 21√7/7 => x₂ = 3√7