Răspuns:
Explicație pas cu pas:
1 +3 + 5+... + 101 = ?
Aceasta este un fel de suma gaus ,doar ca sunt numere impare, prin urmare vom face suma nr cuprinse intre 1 și 101
1+2+3...+101 = 101×100÷2
= 10100÷2= 5050
Acum din suma mare , vom scădea numerele pare
2+4+6+...+ 100 =
= 2 ×(1+2+...+50)
=2× ( 50×51 ÷2)
= 2× ( 2550 ÷2 ) .... Cum este și ×2 și ÷ 2 ele se reduc , prin urmare rezultatul este 2550
NU ESTE GATA, acum vom scădea din suma mare , suma obținută anterior
5050- 2550= 2500 , abia acum problema este gata