Răspuns :

Răspuns:

[√ (n²+1)]+ [√ (n²+2)]+ [√ (n²+3)]+…..+ [√ (n²+n)]=n²,  este pătrat perfect

Explicație pas cu pas:

[√ (n²+1)]+ [√ (n²+2)]+ [√ (n²+3)]+…..+ [√ (n²+n)], n∈N*

n²+n=n(n+1)

[√ (n*n)]< [√ (n(n+1)]<[√ (n+1)²]

            n <[√ (n(n+1)] < n+1

[√ (n²+1)]=[√ (n²+2)]= [√ (n²+3)]=…..= [√ (n²+n)]=n

=>[√ (n²+1)]+ [√ (n²+2)]+ [√ (n²+3)]+…..+ [√ (n²+n)]=

=n+n+n+…+n=n*n=n² este pătrat perfect