Răspuns:
Explicație pas cu pas:
[tex]b=(\dfrac{1}{\sqrt{2} }+\dfrac{1}{\sqrt{3} }+\dfrac{1}{\sqrt{6} }):\dfrac{1}{\sqrt{6} }= (\dfrac{1}{\sqrt{2} }+\dfrac{1}{\sqrt{3} }+\dfrac{1}{\sqrt{6} })*\dfrac{\sqrt{6} }{1}=\\=\dfrac{1}{\sqrt{2}}* \dfrac{\sqrt{6}}{1}+\dfrac{1}{\sqrt{3}}* \dfrac{\sqrt{6} }{1}+\dfrac{1}{\sqrt{6} }* \dfrac{\sqrt{6} }{1}=\dfrac{\sqrt{2}*\sqrt{3}}{\sqrt{2} }+\dfrac{\sqrt{2}*\sqrt{3}}{\sqrt{3} }+1=\\=\sqrt{3}+\sqrt{2}+1.[/tex]