Răspuns:
Explicație pas cu pas:
[tex]\left \{ {{(x+2)(y-3)=(x-3)(y+2)+30} \atop {x(2x-y+1)=2x^{2}-x(y-2)-13}} \right.~\left \{ {{xy-3x+2y-6=xy+2x-3y-6+30} \atop {2x^{2}-xy+x=2x^{2}-xy+2x-13}} \right. ~\left \{ {{2y+3y=2x+3x+30} \atop {x-2x=-13}} \right. \\ ~\left \{ {{5y=5x+30~|:5} \atop {-x=-13~|:(-1)}}~\left \{ {{y=x+6} \atop {x=13}} \right. \right. ~\left \{ {{y=13+6} \atop {x=13}} \right. ~\left \{ {{x=13} \atop {y=19}} \right. \\[/tex]
Raspuns: S={(13;19)}