Răspuns :

Răspuns:

1342

[tex]log_{\frac{1}{2} } (2x+3)>0[/tex]

(2x+3)>0

x>[tex]-\frac{3}{2}[/tex]

x∈(-[tex]\frac{3}{2}[/tex],+∞)=DVA

(2x+3)>0

x>[tex]-\frac{3}{2}[/tex]

x∈([tex]-\frac{3}{2} ,[/tex]+∞)

2x+3<1

2x<-2

x<-1

x∈([tex]-\frac{3}{2} ,-1)[/tex]⊂DVA

-----------------------------------------------

1344

log₃(1-2x)≥log₃(5-2x)

1-2x>0

-2x>-1

x<[tex]\frac{1}{2}[/tex]

x∈(-∞, 1/2)

5-2x>0

-2x>-5

x<5/2=2,5

x∈(-∞; 2,5)

x=(-∞, 1/2)∩(-∞, 2,5)=(-∞,1/2)=DVA

Delogaritmezi

1-2x≥5x-2

-2x-5x≥-2-1

-7x≥ -3

x≤3/7

x∈(-∞, 3/7]⊂DVa

--------------------------------------------------------------

1348

log₂(3x-2)>log₂(6-5x)

3x-2>0

x>2/3

x∈(2/3,+∞)

6-5x>0

-5x>-6

x<6/5

x∈(-∞, 6/5)

x∈(2/3,+∞)∩(-∞,6/5)=(2/3,6/5)

Delogaritmezi

3x-2>6-5x

3x+5x>6+2

8x>8

x>1

x∈(1,+∞)⊂DVA

Explicație pas cu pas: