Răspuns :
ΔAOB Δisoscel deoarece AO si OB raze in cerc, deci unghiurile OAB si OBA sunt ≡
masura unghiurilor in triunghi este 180
180-140=40:2=20, deci OAB=OBA=20
ΔOBC isoscel OB OC raze in cerc , unghiurile OBC si OCB sunt congruente
180-160=20:2=10
m(AOC)=360-(m(AOB)+m(BOC))=360-300=60:2=30
ΔAOC Δisoscel
180-30=120:2=60
m(A)=m(CAO)+m(OAB)= 60+20=80
m(B)=m(OBA)+m(CBO)=20+10=30
m(C)=m(OCB)+m(OCA)=10+60=70
masura unghiurilor in triunghi este 180
180-140=40:2=20, deci OAB=OBA=20
ΔOBC isoscel OB OC raze in cerc , unghiurile OBC si OCB sunt congruente
180-160=20:2=10
m(AOC)=360-(m(AOB)+m(BOC))=360-300=60:2=30
ΔAOC Δisoscel
180-30=120:2=60
m(A)=m(CAO)+m(OAB)= 60+20=80
m(B)=m(OBA)+m(CBO)=20+10=30
m(C)=m(OCB)+m(OCA)=10+60=70
Sunt 2 situatii:
1. cand arcul BC nu include punctul A
m(<AOB)=m(arcAB)=140*
m(<BOC)=m(arcBC)=160*
m(arcAC)=360*-(m(arcAB)+m(arcBC))=360*-(140*+160*)=360*-300*=60*
m(<BAC)=[tex] \frac{m(arc(BC)}{2} = \frac{160 ^{0} }{2} =80^{0} [/tex]
m(<ABC)=[tex] \frac{m(arc(AC)}{2} = \frac{60 ^{0} }{2} =30^{0} [/tex]
m(<ACB)=[tex] \frac{m(arc(AB)}{2} = \frac{140 ^{0} }{2} =70^{0} [/tex]
2. cand arcul BC include punctul A
m(<AOB)=m(arcAB)=140*
m(<BOC)=m(arcBAC)=160*
m(arcAC)=m(arcBAC)-m(arcAB)=160*-140*=20*
m(<BAC)=[tex] \frac{m(arc_mare(BC)}{2} = \frac{360^{0}-160 ^{0} }{2} =100^{0} [/tex]
m(<ABC)=[tex] \frac{m(arc(AC)}{2} = \frac{20 ^{0} }{2} =10^{0} [/tex]
m(<ACB)=[tex] \frac{m(arc(AB)}{2} = \frac{140 ^{0} }{2} =70^{0} [/tex]
1. cand arcul BC nu include punctul A
m(<AOB)=m(arcAB)=140*
m(<BOC)=m(arcBC)=160*
m(arcAC)=360*-(m(arcAB)+m(arcBC))=360*-(140*+160*)=360*-300*=60*
m(<BAC)=[tex] \frac{m(arc(BC)}{2} = \frac{160 ^{0} }{2} =80^{0} [/tex]
m(<ABC)=[tex] \frac{m(arc(AC)}{2} = \frac{60 ^{0} }{2} =30^{0} [/tex]
m(<ACB)=[tex] \frac{m(arc(AB)}{2} = \frac{140 ^{0} }{2} =70^{0} [/tex]
2. cand arcul BC include punctul A
m(<AOB)=m(arcAB)=140*
m(<BOC)=m(arcBAC)=160*
m(arcAC)=m(arcBAC)-m(arcAB)=160*-140*=20*
m(<BAC)=[tex] \frac{m(arc_mare(BC)}{2} = \frac{360^{0}-160 ^{0} }{2} =100^{0} [/tex]
m(<ABC)=[tex] \frac{m(arc(AC)}{2} = \frac{20 ^{0} }{2} =10^{0} [/tex]
m(<ACB)=[tex] \frac{m(arc(AB)}{2} = \frac{140 ^{0} }{2} =70^{0} [/tex]